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Abstract—The problem of automated theorem finding is one
of 33 basic research problems in automated reasoning which
was originally proposed by Wos in 1988, and it is still an open
problem. The problem implicitly requires some metrics to be
used for measuring interestingness of found theorems. A set of
metrics for measuring interestingness of theorems in automated
theorem finding by forward reasoning have been proposed, and
case studies to measure interestingness of the theorems of NBG
set theory and Peano’s arithmetic were performed. This paper
presents a case study in Tarski’s geometry to show the generality
of proposed metrics. In the case study, we use the metrics to
measure interestingness of the theorems of Tarski’s geometry
obtained by using forward reasoning approach, and confirm the
effectiveness of the metrics.

Index Terms—Metric; automated theorem finding; forward
reasoning; strong relevant logic; Tarski’s geometry

I. INTRODUCTION

The problem of automated theorem finding (ATF for short)
is one of the 33 basic research problems in automated rea-
soning which was originally proposed by Wos in 1988 [18],
[19], and it is still an open problem until now [11]. The
problem of ATF is “What properties can be identified to permit
an automated reasoning program to find new and interesting
theorems, as opposed to proving conjectured theorems?” [18],
[19]. The most important and difficult requirement of the
problem is that, in contrast to proving conjectured theorems
supplied by the user, it asks for the criteria that an automated
reasoning program can use to find some theorems in a field
that must be evaluated by theorists of the field as new and
interesting theorems. The significance of solving the problem
is obvious because an automated reasoning program satisfying
the requirement can provide great assistance for scientists in
various fields [1]–[3].

A few works aimed to automated theorem discovery (ATD)
and automated theorem generation (ATG) have been done [5]–
[7], [11], [13]–[15]. However, the problem of ATF is different
from the ATD and ATG such that their works are not suitable
to be used in ATF. In fact, Wos’s problem can be regarded
as an attempt to find a systematic methodology in automated
reasoning area, but the works on ATD and ATG almost aim
to one certain mathematical field. Besides, the works of ATD
and ATG rely on the approach of automated theorem proving,
however, if we want to find new and interesting theorems, the
only way is to use forward reasoning approach [2], [3].

To solve the ATF problem, a systematic methodology for
ATF by using forward reasoning approach based on strong
relevant logics was proposed [1]–[3], [10]. Following the
proposed methodology, we have proposed a set of metrics to
help us to find new and interesting theorems, and case studies
to measure interestingness of the theorems of NBG set theory
and Peano’s arithmetic were presented [9], [12].

This paper presents a case study in Tarski’s geometry to
show the generality of proposed metrics. In the case study, we
use the metrics to measure interestingness of the theorems
of Tarski’s geometry obtained by using forward reasoning
approach, and confirm the effectiveness of the metrics.

II. BASIC NOTIONS AND NOTATIONS

A formal logic system L is an ordered pair (F (L),⊢L)
where F (L) is the set of well formed formulas of L, and
⊢L is the consequence relation of L such that for a set P of
formulas and a formula C, P ⊢L C means that within the
framework of L taking P as premises we can obtain C as a
valid conclusion. Th(L) is the set of logical theorems of L
such that ϕ ⊢L T holds for any T ∈ Th(L). According to



the representation of the consequence relation of a logic, the
logic can be represented as a Hilbert style system, a Gentzen
sequent calculus system, a Gentzen natural deduction system,
and so on [3].

Let (F (L),⊢L) be a formal logic system and P ⊆ F (L) be
a non-empty set of sentences. A formal theory with premises
P based on L, called a L-theory with premises P and denoted
by TL(P ), is defined as TL(P ) =df Th(L) ∪ The

L(P ) where
The

L(P ) =df {A|P ⊢L A and A /∈ Th(L)}, Th(L) and
The

L(P ) are called the logical part and the empirical part of
the formal theory, respectively, and any element of The

L(P )
is called an empirical theorem of the formal theory [3].

Based on the definition above, the problem of ATF can
be said as “for any given premises P , how to construct
a meaningful formal theory TL(P ) and then find new and
interesting theorems in The

L(P ) automatically?” [3].
The notion of degree of a logical connective [3] is defined

as follows: Let θ be an arbitrary n-ary (1 ≤ n) connective
of logic L and A be a formula of L, the degree of θ in A,
denoted by Dθ(A), is defined as follows: (1) Dθ(A) = 0 if
and only if there is no occurrence of θ in A, (2) if A is in
the form θ(a1, a2, ..., an) where a1, a2, ..., an are formulas,
then Dθ(A) = max{Dθ(a1), Dθ(a2), ..., Dθ(an)} + 1, (3) if
A is in the form σ(a1, a2, ..., an) where σ is a connective
different from θ and a1, a2, ..., an are formulas, then Dθ(A) =
max{Dθ(a1), Dθ(a2), ..., Dθ(an)}, and (4) if A is in the form
QB where B is a formula and Q is the quantifier prefix of B,
then Dθ(A) = Dθ(B).

The notion of predicate abstract level [10] is defined as
follows: (1) Let pal(X) = k denote that an abstract level
of a predicate X is k where k is a natural number, (2)
pal(X) = 1 if X is the most primitive predicate in the target
field, (3) pal(X) = max(pal(Y1), pal(Y2), ..., pal(Yn))+1 if
a predicate X is defined by other predicates Y1, Y2, ..., Yn in
the target field where n is a natural number. A predicate X is
called k-level predicate, if pal(X) = k. If pal(X) < pal(Y ),
we call the abstract level of predicate X is lower than Y , and
Y is higher than X .

The notion of function abstract level [10] is defined as
follows: (1) Let fal(f) = k denote that an abstract level of a
function f is k where k is a natural number, (2) fal(f) = 1
if f is the most primitive function in the target field, (3)
fal(f) = max(fal(g1), fal(g2), ..., fal(gn))+1 if a function
f is defined by other functions g1, g2, ..., gn in the target field
where n is a natural number. A function f is k-level function,
if fal(f) = k. If fal(f) < fal(g), we call the abstract level
of function f is lower than g, and g is higher than f .

The notion of abstract level [10] of a formula is defined
as follows: (1) Let lfal(A) = (k,m) denote that an ab-
stract level of a formula A where k = pal(A) and m =
fal(A), (2) pal(A) = max(pal(Q1), pal(Q2), ..., pal(Qn))
where Qi is a predicate and occurs in A (1 ≤ i ≤ n),
or pal(A) = 0, if there is not any predicate in A, (3)
fal(A) = max(fal(g1), fal(g2), ..., fal(gn)) where gi is a
function and occurs in A (1 ≤ i ≤ n), or fal(A) = 0, if there
is not any function in A. A formula A is (k,m)-level formula,

TABLE I
DEGREE OF ⇒ OF COLLECTED KNOWN THEOREMS IN NBG SET THEORY

Degree Appeared time Appeared rate
⇒,0 242 56%
⇒,1 187 44%
⇒,2 0 0%
⇒,3 0 0%
⇒,4 0 0%

if lfal(A) = (k,m).
The deduction distance by using Modus Ponens is de-

fined as below: (1) Dist(A) = 0, if A an axiom; (2)
Dist(A) = max(Dist(α), Dist(β)) + 1, if A is deduced from
two empirical theorems α and β by using Modus Ponens; (3)
Dist(A) = Dist(α) + 1, if A is deduced from an empirical
theorem α and a logical theorem β by using Modus Ponens;
(4) Dist(A) = Dist(α), if A is abstracted from α.

The propositional schema of a first-order logical formula
can be obtained by removing all of quantifiers and replacing
all of atomic formulas of a first-order logical formula with
propositional atomic formulas. For example, ∀x∀y(((x =
y) ⇒ (y = x)) ⇒ (x ⊆ y)) is translated into (A ⇒ B) ⇒ C.

III. FACTORS RELATED TO INTERESTINGNESS OF
THEOREMS

We consider that plural factors relate to the interestingness
of found theorems by ATF. The plural factors are the degree
of logical connectives in empirical theorems, propositional
schema of empirical theorems, abstract level of empirical
theorems, and deduction distance of empirical theorems.

Degree of logical connectives

The first factor related to interestingness of theorems is
the degree of logical connectives in empirical theorems. We
have analyzed more than 400 known theorems of NBG set
theory, near 1,000 known theorems of Peano’s arithmetic and
87 known theorems of Tarski’s geometry in Quaife’s book
[16] about the degree of logical connectives, and our analysis
results are shown in Table I-XII. We found the degrees of
the logical connectives of those known theorems are almost
lower than 2. Therefore, the degree of logical connectives
is related to the interestingness of empirical theorems, and
interesting theorems always hold lower degree of logical
connectives. The reason is that those theorems holding high
degree of logical connectives are hard to be understood and
mathematicians always introduce new predicates to abstract
the formula holding higher degree of logical connectives.
Cheng conjectured that almost all new theorems and questions
of a formal theory can be deduced from the premises of that
theory by finite inference steps concerned with finite number
of low degree entailments [3].

Propositional schema of formula

The second factor is propositional schema of formula that
we have defined in Section 2. We consider that the interesting
theorems hold some frequent propositional schemata, after



TABLE II
DEGREE OF ∧ OF COLLECTED KNOWN THEOREMS IN NBG SET THEORY

Degree Appeared time Appeared rate
∧,0 356 83%
∧,1 64 15%
∧,2 7 <2%
∧,3 2 <1%
∧,4 0 0%

TABLE III
DEGREE OF ∨ OF COLLECTED KNOWN THEOREMS IN NBG SET THEORY

Degree Appeared time Appeared rate
∨,0 381 89%
∨,1 43 10%
∨,2 5 1%
∨,3 0 0%
∨,4 0 0%

TABLE IV
DEGREE OF ¬ OF COLLECTED KNOWN THEOREMS IN NBG SET THEORY

Degree Appeared time Appeared rate
¬,0 404 94%
¬,1 25 6%
¬,2 0 0%
¬,3 0 0%
¬,4 0 0%

TABLE V
DEGREE OF ⇒ OF COLLECTED KNOWN THEOREMS IN PEANO’S

ARITHMETIC

Degree Appeared time Appeared rate
⇒,0 486 51%
⇒,1 473 49%
⇒,2 0 0%
⇒,3 0 0%
⇒,4 0 0%

TABLE VI
DEGREE OF ∧ OF COLLECTED KNOWN THEOREMS IN PEANO’S

ARITHMETIC

Degree Appeared time Appeared rate
∧,0 782 82%
∧,1 144 15%
∧,2 28 <3%
∧,3 4 <1%
∧,4 1 <1%

TABLE VII
DEGREE OF ∨ OF COLLECTED KNOWN THEOREMS IN PEANO’S

ARITHMETIC

Degree Appeared time Appeared rate
∨,0 795 83%
∨,1 146 15%
∨,2 18 2%
∨,3 0 0%
∨,4 0 0%

TABLE VIII
DEGREE OF ¬ OF COLLECTED KNOWN THEOREMS IN PEANO’S

ARITHMETIC

Degree Appeared time Appeared rate
¬,0 881 92%
¬,1 78 8%
¬,2 0 0%
¬,3 0 0%
¬,4 0 0%

TABLE IX
DEGREE OF ⇒ OF COLLECTED KNOWN THEOREMS IN TARSKI’S

GEOMETRY

Degree Appeared time Appeared rate
⇒,0 22 25%
⇒,1 65 75%
⇒,2 0 0%
⇒,3 0 0%
⇒,4 0 0%

we investigated the propositional schemata of more than
400 known theorems of NBG set theory, near 1,000 known
theorems of Peano’s arithmetic and 87 known theorems of
Tarski’s geometry. The most frequent propositional schemata
of known theorems is A type. A theorem is always interesting
if the theorem does not contain any logical connective, because
it holds clear and concise semantics. The second frequent
propositional schema is A ⇒ B. We think the reason is that “if
A then B ” is a very frequent conditional propositional schema
in any fields. Other frequent propositional schemata have
been also shown in Table XIII-XV. The analysis results show
that known theorems always hold some frequent propositional
schemata. We can see known theorems as found interesting
theorems, so we consider that the new and interesting theorems
may also holds those frequent propositional schemata.

Abstract level

The third factor is the abstract level of predicates and

TABLE X
DEGREE OF ∧ OF COLLECTED KNOWN THEOREMS IN TARSKI’S

GEOMETRY

Degree Appeared time Appeared rate
∧,0 46 53%
∧,1 24 28%
∧,2 7 8%
∧,3 3 3%
∧,4 2 2%
∧,5 5 6%

TABLE XI
DEGREE OF ∨ OF COLLECTED KNOWN THEOREMS IN TARSKI’S

GEOMETRY

Degree Appeared time Appeared rate
∨,0 62 71%
∨,1 20 23%
∨,2 5 6%
∨,3 0 0%
∨,4 0 0%



TABLE XII
DEGREE OF ¬ OF COLLECTED KNOWN THEOREMS IN TARSKI’S

GEOMETRY

Degree Appeared time Appeared rate
¬,0 82 94%
¬,1 5 6%
¬,2 0 0%
¬,3 0 0%
¬,4 0 0%

TABLE XIII
FREQUENT PROPOSITIONAL SCHEMATA OF COLLECTED KNOWN

THEOREMS IN NBG SET THEORY

Propositional schema Appeared time Appeared rate
A 186 43%

A ⇒ B 108 25%
(A ∧B) ⇒ C 54 13%

A ∨B 26 6%
A ⇒ (B ∨ C) 17 4%

¬A 14 3%
¬(A ∧B) 10 2%

(A ∧B ∧ C) ⇒ D 6 1%
A ∨B ∨ C 5 1%

(A ∧B ∧ C ∧D) ⇒ E 2 <1%
¬(A ∧B ∧ C) 1 <1%

functions in one theorem. In the mathematical fields, math-
ematicians always make definition from simple to complex.
For example, the predicate “∈” is the most basic predicate in
the set theory. Then the mathematicians define the predicate
“⊆” which is a higher level predicate than “∈”, and abstracts
from “∈” by the definition of “⊆”: ∀x∀y(∀u((u ∈ x) ⇒ (u ∈
y)) ⇔ (x ⊆ y)). Then the mathematicians define the predicate
“=” which is a higher level predicate than “⊆”, and abstracts
from “⊆” by the axiom: ∀x∀y(((x ⊆ y) ∧ (y ⊆ x)) ⇔ (x =
y)). Based on the fact, we can consider that a theorem holds
higher abstract level predicates and functions, the theorem is
more interesting from the viewpoint of the meaning of the
theorem.

Deduction distance

The fourth factor is deduction distance. If a theorem can be
reasoned out by several steps, the theorem is easy to be found
and is obvious to be understood by observing used premises.
The interesting theorems are those theorems which are difficult
to be reasoned out from premises. Therefore, if the deduction
distance of an obtained theorem is long, the theorem may be
interesting.

IV. A SET OF METRICS FOR MEASURING
INTERESTINGNESS OF THEOREMS

Our metrics to measure the interestingness of obtained
empirical theorems consists of parameters about the degree
of logical connectives, propositional schema of formula, ab-
stract level and deduction distance, and we use four variables
V d, V p, V a, V e to represent four parameters respectively. In
detail, the parameter about the degree of logical connective
is defined as V d = V alue⇒ ∗ V alue∧ ∗ V alue∨ ∗ V alue¬.
We showed the value of parameter about the degree of logical

TABLE XIV
FREQUENT PROPOSITIONAL SCHEMATA OF COLLECTED KNOWN

THEOREMS IN PEANO’S ARITHMETIC

Propositional schema Appeared time Appeared rate
A 321 33%

A ⇒ B 270 28%
(A ∧B) ⇒ C 101 11%

A ∨B 72 8%
A ⇒ (B ∨ C) 65 7%

¬A 37 4%
¬(A ∧B) 35 4%

(A ∧B ∧ C) ⇒ D 21 2%
A ∨B ∨ C 15 2%

(A ∧B) ⇒ (C ∨D) 8 <1%
¬(A ∧B ∧ C) 6 <1%

(A ∧B ∧ C ∧D) ⇒ E 3 <1%
A ⇒ (B ∨ C ∨D) 2 <1%

(A ∧B ∧ C ∧D) ⇒ (E ∨ F ∨G) 1 <1%
(A ∧B ∧ C ∧D ∧ E) ⇒ F 1 <1%
(A ∧B ∧ C) ⇒ (D ∨ E) 1 <1%

TABLE XV
FREQUENT PROPOSITIONAL SCHEMATA OF COLLECTED KNOWN

THEOREMS IN TARSKI’S GEOMETRY

Propositional schema Appeared time Appeared rate
A ⇒ B 22 25%

A 16 18%
(A ∧B) ⇒ C 11 13%

(A ∧B) ⇒ (C ∨D) 10 11%
¬A 5 6%

(A ∧B ∧ C) ⇒ (D ∨ E) 4 5%
(A ∧B ∧ C) ⇒ D 3 3%

(A ∧B ∧ C ∧D) ⇒ E 3 3%
(A ∧B) ⇒ (C ∨D ∨ E) 3 3%

(A ∧B ∧ C ∧D ∧ E ∧ F ) ⇒ (G ∨H) 3 3%
(A ∧B ∧ C ∧D ∧ E) ⇒ (F ∨G ∨H) 2 2%

A ⇒ (B ∨ C) 2 2%
(A ∧B ∧ C ∧D ∧ E ∧ F ) ⇒ G 2 2%

B ∨ C 1 1%

connective in Table XVI-XIX. Second, we presented the value
of parameter about the propositional schemata of formula in
Table XX. We assign the value 0 for empirical theorems
containing a tautology part, because if one theorem contains
a tautology part, this empirical theorem must not be an
interesting empirical theorem. Third, if the abstract level of one
empirical theorem is (k,m), then the value of parameter about
abstract level of one theorem is defined as V a = k+m. Fourth,
if the deduction distance of one empirical theorem is Dist(A),
then the value about the parameter about deduction distance
is defined as V e = Dist(A). By using four parameters V d,
V p, V a and V e, we can use several metrics to measure the
interestingness of an obtained empirical theorems, such as:
V d, V p, V a, V e, V d ∗ V p, V d ∗ V a, V d ∗ V e, V p ∗ V a,
V p∗V e, V a∗V e, V d∗V p∗V a, V d∗V p∗V e, V p∗V a∗V e,
V d∗V a∗V e, V d∗V p∗V a∗V e. The value is bigger, theorem
is more interesting.

V. CASE STUDY IN TARSKI’S GEOMETRY

“In his 1926 - 1927 lectures at the University of Warsaw,
Alfred Tarski gave an axiomatic development of elementary
Euclidean geometry, the part of plane Euclidean geometry that
is not based upon set-theoretical notions, or, in other words,



TABLE XVI
THE VALUE OF PARAMETER ABOUT DEGREE OF ⇒

Logical connective Degree Value
⇒ 0 1
⇒ 1 1
⇒ 2 1/2
⇒ 3 1/3
⇒ n 1/n

TABLE XVII
THE VALUE OF PARAMETER ABOUT DEGREE OF ∧

Logical connective Degree Value
∧ 0 1
∧ 1 1
∧ 2 1/2
∧ 3 1/3
∧ n 1/n

the part that can be developed within the framework of first-
order logic” [17]. We have not used our metric to measure the
empirical theorems of Tarski’s geometry.

The purpose of the case study was to confirm the generality
of the proposed metrics. In the case study, we applied the
proposed metrics of interestingness in empirical theorems of
Tarski’s geometry obtained by forward reasoning approach.
We collected the axioms and definitions of Tarski’s geometry
from Quaife’s book [16]. We used all of axioms and definitions
of Tarski’s geometry in Quaife’s book as premises, performed
automated forward reasoning by using FreeEnCal [4], and
obtained empirical theorems of Tarski’s geometry [8]. Then,
we applied the proposed metrics to the obtained empirical
theorems as same as case studies in NBG set theory and
Peano’s arithmetic [9], [12]. In detail, we measured V d and V p
of those empirical theorems. To measure V a, we summarized
the abstract levels of the predicates of Tarski’s geometry in
Quaife’s book. Then, we also summarized the abstract levels
of the functions of Tarski’s geometry in Quaife’s book. Finally,
we also recorded V e for each empirical theorem according to
the information provided by FreeEnCal.

The case studies in NBG set theory and Peano’s arithmetic

TABLE XVIII
THE VALUE OF PARAMETER ABOUT DEGREE OF ∨

Logical connective Degree Value
∨ 0 1
∨ 1 1
∨ 2 1/2
∨ 3 1/3
∨ n 1/n

TABLE XIX
THE VALUE OF PARAMETER ABOUT DEGREE OF ¬

Logical connective Degree Value
¬ 0 1
¬ 1 1
¬ 2 1/2
¬ 3 1/3
¬ n 1/n

TABLE XX
THE VALUE OF PARAMETER ABOUT PROPOSITIONAL SCHEMATA OF

FORMULA

Propositional schema Value
A 3

A ⇒ B 3
¬A 2

¬(A1 ∧ ... ∧An) 2
A1 ∨ ... ∨An 2

(A1 ∧ ... ∧An) ⇒ (B1 ∨ ... ∨Bn) 2
Infrequent propositional schema 1

Propositional schema containing tautology 0

Fig. 1. The number of empirical theorems of Tarski’s geometry on each value

showed that the combination V d∗V p∗V a∗V e [9], [12] is well,
because range of values is wide and deviation is obvious such
that we can easily distinguish the weight of interestingness
for empirical theorems. Therefore, in the case study, we also
use the combination V d ∗ V p ∗ V a ∗ V e as metric, and use it
to measure the interestingness of Tarski’s geometry. Then we
investigated how many empirical theorems on each value for
the combination V d ∗V p ∗V a ∗V e and showed the results in
Fig. 1.

Comparing the investigated results with the results in case
studies of NBG set theory and Peano’s arithmetic, we found
the following facts. First, our metrics can generally filter
uninteresting theorems from all of obtained empirical theorems
in different mathematical fields (the case study of NBG set
theory, Peano’s arithmetic and Tarski’s geometry), Second,
the empirical theorems whose values are in middle part are
most, and the empirical theorems which hold lower value
are few. However, in the case study of NBG set theory and
Peano’s arithmetic, the empirical theorems which hold higher
values are few, but in the case study of Tarski’s geometry,
the empirical theorems which hold higher value are many.
We consider that the reason is that the range of value of
interestingness is 0-28 in the case study, but 0-28 is only a
part in the last two case studies. Maybe the empirical theorems
which hold higher value will be diminishing, if the maximum
value is extended.

VI. CONCLUDING REMARKS

We have presented a case study in Tarski’s geometry, in
which we used the proposed metrics to measure the inter-
estingness of empirical theorems reasoned out by forward



Fig. 2. The number of empirical theorems of NBG set theory on each value

Fig. 3. The number of empirical theorems of Peano’s arithmetic on each
value

reasoning approach. The result of the case study showed that
our metrics can be used in ATF of different mathematical
fields.

There are many interesting and challenging research prob-
lems in our future works. First, we will confirm the proposed
metrics by measuring interestingness of known mathematical
theorems in mathematical books, however current works only
apply those metrics in empirical theorems obtained by forward
reasoning approach. We will use our metrics to measure the
interestingness of known theorems in mathematical books and
sort the order from low value to high value, then we compare
the sorted order with the appearing order of those known
theorems in mathematical books. We expect two orders are
almost same, because known theorems in mathematical books
are always recorded from simple to complex. Second, we will
do case studies of ATF in other fields to confirm the generality
of the metrics, such as graph theory and lattice theory.
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